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1. Introduction

Researchers investigating the acquisition of phrase-structure grammars from
raw text have had only mixed success. In particular, unsupervised learn-
ing techniques, such as the inside-outside algorithm (Baker, 1979) for esti-
mating the parameters of stochastic context-free grammars (SCFGs), tend
to produce grammars that structure text in ways contrary to our lin-
guistic intuitions. One effective way around this problem is to use hand-
structured text like the Penn Treebank (Marcus, 1991) to constrain the
learner: (Pereira and Schabes, 1992) demonstrate that the inside-outside al-
gorithm can learn grammars effectively given such constraint, and currently
the best performing parsers are trained on treebanks (Black et al., 1992;
Magerman, 1995).

The necessity of bracketed corpora for training is grating to our sensibil-
ities, for several reasons. First, bracketed corpora are not easy to come by.
Second, there is a sense that in learning from them, little of interest is going
on. In the case of the acquisition of stochastic context-free grammars, the
parameters can be read off of a fully-bracketed corpus by simply counting.
Finally, the inability of current techniques to learn (without supervision)
the parameters we desire suggests that our models and training methods
are mismatched to the problem.

This paper examines why some previous approaches have failed to ac-
quire desired grammars without supervision, and proposes that with a dif-
ferent conception of phrase-structure supervision might not be necessary.
In particular, it describes in detail some reasons why SCFGs are poor mod-
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els to use for learning human language, especially when combined with the
inside-outside algorithm. Following up on these arguments, it proposes that
head-driven grammatical formalisms like link grammars (Sleator and Tem-
perley, 1991) are better suited to the task, and introduces a framework for
CFG induction that sidesteps many of the search problems that previous
schemes have had. In the end, we hope the analysis presented here convinces
others to look carefully at their representations and search strategies before
blindly applying them to the language learning task.

We start the discussion by examining the differences between the lin-
guistic and statistical motivations for phrase structure; this frames our
subsequent analysis. Then we introduce a simple extension to stochastic
context-free grammars, and use this new class of language models in two ex-
periments that pinpoint specific problems with both SCFGs and the search
strategies commonly applied to them. Finally, we explore fixes to these
problems.

2. Linguistic and Statistical Basis of Phrase Structure

Let us look at a particular example. In English, the word sequence “walking
on ice” is generally labeled with an internal structure similar to (A).!

(A) (B) (©) (D)

NP

VP VP PP
7 pp 7 W 7 pp 7w
F N F W W
(E) (F) (G) (H)

VP pPp NP NP

e T e i N A
2 T e s T

Why (A) and not one of (B-H)? An introductory linguistics book might
proffer the following answers:

'We will be deliberately vagne about what such dominance and precedence rela-
tions represent; obviously different researchers have very different conceptions about the
relevence and implications of heirarchical phrase-structure. The specific interpretation
given to trees is somewhat irrelevent to our immediate discussion, though various in-
terpretaions will be discussed throughout this paper. In fact, we suspect that for most
applications conventional parse trees such as those found in the Penn Treebank, with
their historical roots in deletion and substitution phenomena, are a poor choice for a
representation.
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— on ice can move and delete as one unit, whereas walking on can not.
Thus, “it is on ice that I walked” and “it is walking that I did on
1ee” and  “it is ice that I walked on” are sentences but there in no
equivalent form for topicalizing walking on. Similarly, “they walked and
jumped on ice” is grammatical but “they walked on and jumped on
1ce” is awkward. Therefore, if movement and conjunction is of single
constituents, phrase-structures (A-D) explain this evidence but (E-H)
do not.

— In languages like German where case is overtly manifested in affix and
determiner choice, the noun ice clearly receives case from the prepo-
sition rather than the verb. It seems to make for a simpler theory of
language if case is assigned through the government relation, which
holds between the preposition and noun in (A-D) but not in (E-H).

— The phrase walking on ice acts like a verb: it can conjoin with a verb
( “John walked on ice and sang”), and takes verbal modifiers ( “John
walked on ice slowly”). So it makes little sense to call it a prepositional
phrase or noun phrase, as in (C) or (D). on ice does not behave as a
noun, so (A) is a better description than (B).

Statistical phrase-structure models of language, such as SCFGs, are mo-
tivated by entirely different aspects of language. The measure of merit for a
grammar is not how well it explains various structural and interpretive phe-
nomena, but how well it predicts the sentences of a corpus. The production
rules of a grammar act as a mechanism for specifying statistical depen-
dencies. This suggests that phrase structure can be recovered by grouping
sequences of words that occur together more often than independent chance
would predict. (Magerman and Marcus, 1990) adopt this approach for pars-
ing sentences, and use a metric based on mutual information between words
rather than a traditional grammar to reconstruct phrase-structure. In fact,
the heuristic of grouping unusually common sequences lies at the heart of
most unsupervised grammar induction mechanisms.

Unfortunately, there is anecdotal and quantitative evidence that sim-
ple techniques for estimating context-free grammars by minimizing cross-
entropy? do not lead to the desired grammars (grammars that agree with
structure (A), for instance). (Pereira and Schabes, 1992) explore this topic,
demonstrating that an SCFG trained on part-of-speech sequences from
English text can have a cross-entropy as low or lower than another but
bracket the text much more poorly (tested on hand-annotations). And
(Magerman and Marcus, 1990) provide evidence that greedily grouping
sequences of words that predict each other is not always a good heuristic;

?Readers unfamiliar with the terminology of information theory may wish to consult
appendix A for a brief introduction.
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they must include in their parsing algorithm a list of sequences (such as
noun-preposition) that should not be grouped together in a minimal phrase,
in order to prevent their method from mis-bracketing. To understand why,
we can look at an example from a slightly different domain.

(Olivier, 1968) secks to acquire a lexicon from unsegmented (spaceless)
character sequences by treating each word as a stochastic context-free rule
mapping a common nonterminal (call it W) to a sequence of letters; a
sentence is a sequence of any number of words and the probability of a
sentence is the product over each word of the probability of W expanding
to that word. Learning a lexicon consists of finding a grammar that reduces
the entropy of a training character sequence. Olivier’s learning algorithm
soon creates rules such as W = the and W = tobe. But it also hypothesizes
words like edby. edby is a common English character sequence that occurs
in passive constructions like “the dog was walked by his master”. Here -ed
and by occur together not because they are part of a common word, but
because English syntax and semantics places these two morphemes side-by-
side. At a syntactic level, this is exactly why the algorithm of (Magerman
and Marcus, 1990) has problems: English places prepositions after nouns
not because they are in the same phrase, but because prepositional phrases
often adjoin to noun phrases. Any greedy algorithm that builds phrases
by grouping units with high mutual information will consequently fail to
derive linguistically-plausible phrase structure in many situations.

These results highlight an important point. Anyone who tries to mirror
parses found in a treebank with a grammar trained to optimally predict
word sequences is relying on a strong assumption, namely that prediction
is easiest if it is based on a linguist’s conception of phrase structure. With
the wrong class of language models, this assumption is obviously false. For
example, the maximum-likelihood distribution for any set of n sentences is
the one that assigns probability % to each of these sentences and 0 to every
other. A SCFG with n rules that each produce a single sentence captures
this distribution, but provides no information about linguistic structure
whatsoever. Plainly, either this is too unconstrained a class of models or
the evaluation metric is incorrect (probably both). But, even with a more
constrained class of models, the success of unsupervised, statistical gram-
mar induction is intimately tied to how models take advantage of linguistic
structure. The next section explores this issue in greater depth.

3. A Simple Language Model

The preceeding arguments might lead us to believe that basing phrase-
structure grammar induction on minimization of cross-entropy is a poor
idea. However, in this paper we will not discuss whether statistical opti-
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mization is the proper way to view language acquisition: our goal is only
to better understand why current statistical methods produce the “wrong”
answer and to explore ways of fixing them. With an eye towards this, we
extend the class of stochastic context-free grammars with the notion of a
head. As we will see, in this extended class of grammars, there is reason to
believe that the “linguistically plausible” members are also the ones with
the lowest cross-entropy. This will enable us to pinpoint some failures in
both the grammatical representation and the induction scheme.

Let us look again at (A), reproduced below, and center discussion on
a class of models in which a binary context-free rule 7 = XY with ter-
minals X and Y generates a symbol z € A from the distribution px(-)
and another symbol y € Y from the distribution py|X(-,x).3 Given this
formulation, the joint entropy of the sequence XY is H(X)+ H(Y|X) =
H(X)+ H(Y)—I(X,Y). The point here is that using such a context-free
rule to model a sequence of two words reduces the entropy of the language
from a model that treats the two words as independent, by precisely the
mutual information between the two words.

VP

(A) v PP
N
P N

In English, verbs and prepositions in configuration (A) are closely cou-
pled semantically, probably more closely than prepositions and nouns, and
we would expect that the mutual information between the verb and prepo-
sition would be greater than between the preposition and noun, and greater
still than between the verb and the noun.*

I(V,P)> I(P,N)> I(V,N)

Under this class of models, structure (A) has entropy H(V)+ H(P) +
H(N|P)=H(V)+H(P)+H(N)—I(P,N),which is higher than the entropy
of structures (E-H), H(V)+H(P)+H(N)—I(V,P),and we wouldn’t expect
a learning mechanism based on such a class of models to settle on (A).
However, this simple class of models only captures relations between
adjacent words within the same minimal phrase. In (A), it completely ig-
nores the relation between the verb and the prepositional phrase, save to

"Here we are mixing notation somewhat. X and Y are playing the roles of parts of
speech, treated as random variables. Particular instances of the random variables, such
as ¢, play the role of a word. For further explanation of notation, see appendix A.

*The small size of the set of prepositions imposes an upper bound on I(V,P) and
I(P,N), so it may be that I(V,N) > I(V, P) > I(P, N) in some circumstances, but this

point is not worth dwelling on here; in section 5.2 we will expand on it.
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predict that a prepositional phrase (any prepositional phrase) will follow
the verb. We again extend the class, specifying that nonterminals exhibit
the distributional properties of their heads. We will write a phrase 7 that
is headed by a word z as (7, z). Each grammar rule will look like either
(7', z) = (Z,z)(Y,y) or (Z',z) = (Y,y)(Z,z) (abbreviated Z’ = ZY and
7' = Y Z) and the probability model is

p({Z,z)(Y, y>|<Z/72/>7 7' = zY) pZ|Z’(272/) 'pY|Z(y72)

= 8(2,2) pyiz(y, 2). (1)

p(<Y,y><Z,Z>|<Z/,Z/>,Z/:>YZ) = pZ|Z’(272/)'pY|Z(va)
= 8(2,2) pyiz(y, 2). (2)

Of course, this class of models is strongly equivalent to ordinary context-free
grammars. We could substitute, for every rule Z’ = ZY, a large number
of word-specific rules (7', %) = (Z,z)(Y,y;) with probabilities p(Z’ =
ZY') - py|z(y;, z). Using this new formalism, the head properties of (A)
look like

(VP,v)

and the entropy is
H(\V)+ H(P)+ HN)-I(V,P)=I(P,N).

The grammar derived from (A) is optimal under this class of models
though (C), (F), and (H) are equally good. They could be distinguished
from (A) in longer sentences because they pass different head information
out of the phrase. In fact, the grammar model derived from (A) is as good
as any possible model that does not condition N on V. Under this class
of models there is no benefit to grouping two words with high mutual
information together in the same minimal phrase; it is sufficient for both
to be the heads of phrases that are adjacent at some level.

Of course, we are not claiming this class of models is sufficient to bring
the statisticians’ and linguists’ views of language into perfect alignment.
But it illustrates how, by allowing a statistical model to take advantage of
the structure it imposes on a sentence, one can hope for a happy synergy.
We can ask whether our parameter estimation algorithms are adequate for
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learning with this class of grammars, and whether the class itself still needs
improving, two questions answered by the experiments described next.

4. Two Experiments

We have built a feature-based Earley parser for stochastic grammars that
can be trained using the inside-outside algorithm. Here we describe two
tests that explore the interaction of the head-driven language models de-
scribed above with this parser and training method.

For all the tests presented here, grammars are learned by starting with
an exhaustive set of stochastic context-free rules of a certain form. Rule
probabilities are then estimated from a test corpus. This is the same general
procedure as used by (Lari and Young, 1990; Briscoe and Waegner, 1992;
Pereira and Schabes, 1992) and others. For parts-of-speech Y and Z, the
rules in the base grammar are

S = ZP ZP=Z YP
ZJP=ZPYP ZP=YPZ
ZP= YPZP ZP=7

where § is the root nonterminal. As is ususal with stochastic context-free
grammars, every rule has an associated probability, and the probabilities
of all the rules that expand a single nonterminal sum to one. Furthermore,
each word and phrase has an associated head word (represented as a feature
value that is propagated from the Z or ZP on the right hand side of the
above rules to the left hand side). The parser is given the part of speech of
each word.

For binary rules, as per equations (1) and (2), the distribution of the
non-head word is conditioned on the head (similarly to a bigram model). Ini-
tially, all word bigrams are initialized to uniform distributions, and context-
free rule probabilities are initialized to a small random perturbation of a
uniform distribution.

4.1. SEARCH PROBLEMS FOR A SIMPLE SENTENCE

We created a test corpus of 1000 sentences, each 3 words long with a con-
stant part-of-speech pattern ABC. Using 8 equally probable words per
part-of-speech, we chose a word distribution over the sentences with the
following characteristics:

I(A,B) = 1 bit.
I(B,C) = 0.19 bits.
I(A,C) = 0 bits.
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In other words, given knowledge of the first word in the sentence, predicting
the second word is as difficult as guessing between four equally-likely words,
and knowing the second word makes predicting the third about as difficult
as guessing between seven words. Knowing the first gives no information
about the third.? This is qualitatively similar to the distribution we assumed
for verbs, nouns, and prepositions in configuration (A), and has entropy
3+ (3—-1)4(3—.19) = 7.81 bits. Across 20 runs, the training algorithm
converged to three different grammars:®

S S S
%p\ bp Ap
e e i e
i pr AP B 5 er
2 Jq b
12 times 2 times 6 times

H =794 H=711 H=1711

One fact is immediately striking: even with such simple sentences and
rule sets, more often than not the inside-outside algorithm converges to
a suboptimal grammar. To understand why, let us ignore recursive rules
(ZP = ZP YP) for the moment. Then there are four possible parses of
ABC' (cross-entropy with source given below- lower is better model):

(D ) (K) (L)
S S S

P
AP B
Y

DKU
Oy

=

S

:>

=

H =781 H =881 H =8.00 H =781

®Such distributions are not difficult to create. If a word is represented by a binary
vector bobiba, then a distribution with I(A, B) =1, I(B,C) =1, and I(A,C) = 0 results
from enforcing bo(A) = bo(B) and b, (B) = b1(C) on an otherwise uniform distribution.

SThat is to say, after the cross-entropy had ceased to decrease on a given run, the
parser settled on one of these structures as the Viterbi parse of each sentences in the
corpus. The cross-entropy of the two best grammars is lower than the source entropy
because the corpus is finite and randomly generated, and has been be overfitted.
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During the first pass of the inside-outside algorithm, assuming near-
uniform initial rule probabilities, each of these parses will have equal pos-
terior probabilities. They are equally probable because they use the same
number of expansions” and because word bigrams are uniform at the start
of the parsing process. Thus, the estimated probability of a rule after the
first pass is directly proportional to how many of these parse trees the rule
participates in. The rules that occur more than one time are

AP= A BP (parses [ K)
CP= BPC (parses J,L)
BP= B (parses J,K).

Therefore, on the second iteration, these three rules will have higher prob-
abilities than the others and will cause parses (J) and (K) to be favored
over (I) and (L) (with (K) favored over (J) because I(A, B)+ I(A,C) >
I(B,C)+ 1(A,C)). It is to be expected then, that the inside-outside al-
gorithm favors the suboptimal parse (K): at its start the inside-outside
algorithm is guided by tree counting arguments, not mutual information
between words. This suggests that the inside-outside algorithm is likely to
be highly sensitive to the form of grammar and how many different analyses
it permits of a sentence.

Why, later, does the algorithm not move towards a global optimum?
The answer is that the inside-outside algorithm is supremely unsuited to
learning with this representation. To understand this, notice that to move
from the initially favored parse (K) to one of the optimal ones (I) and (L),
three nonterminals must have their most probable rules switched:

(K) — (1)

AP= A BP — AP=A
BP =B — BP= APB
CP=APC — C(CP= BPC

To simplify the present analysis, let us assume the probability of § = CP
is held constant at 1, and that the rules not listed above have probability
0. In this case, we can write the probabilities of the left three rules as ¢,,
gs and ¢g; and the probabilities of the right three rules as g, = 1 — g4,
7y =1 —¢qs and G, = 1 — g-. Now, for a given sentence abc there are only
two parses with non-zero probabilities, (K) and (L). The prior probability
of parse (K) is gagsqc and the prior probability of parse (L) is §,G57c-

"This is why we can safely ignore recursive rules in this discussion. Any parse that
involves one will have a bigger tree and be significantly less probable.



10 CARL DE MARCKEN

The probability of abe given (K) is pyjc(a,c)ppja(b,a) and given (L) is

po(c)ppio(b, ¢)pajp(a,b). Thus, the posterior probability of parse (K) is®

p(K, abe) 1
p(Klabe) = - - L,abe
p(fx , abC) + p(Lv abc) 1+ g((lx":abc))
1

4 9a989cPB|c(b,c)pajp(a,b)
gagsdcpalc(a,c)ppalba)
1
aAaBacpCUB(va) )
gagBdcpc|alc.a)

1+

Since the inside-outside algorithm reestimates ¢,, gz and ¢c directly from
the sums of the posterior probabilities of (K) and (L) over the corpus, the
probability update rule from one iteration to the next is well approximated

by
1

1 _I_ qucha
qA9dBAC

Ga,qs,qc —

where a is the expected value of pg|g(c,b)/pcial(c, a) over the training cor-
pus, about % in the above test. Figure 4.1 graphically depicts the evolution
of this dynamical system. What is striking in this figure is that the inside-
outside algorithm is so attracted to grammars whose terminals concentrate
probability on small numbers of rules that it is incapable of performing
real search. Instead, it zeros in on the nearest such grammar, only biased
slightly by its relative merits. We now have an explanation for why the
inside-outside algorithm converges to the suboptimal parse (K) so often:
the first ignorant iteration of the algorithm biases the parameters towards
(K), and subsequently there is an overwhelming tendency to move to the
nearest deterministic grammar. This is a strong indication that the algo-
rithm is a poor choice for estimating the parameters of grammars that have
competing rule hypotheses.

4.2. MULTIPLE EXPANSIONS OF A NONTERMINAL
For this test, the sentences were four words long (ABC'D), and we chose a

word distribution with the following characteristics:

#1n the following derivation, understand that for word bigrams paig(a,b) =pgalb,a)
because pa(a) = pr(b) = %.
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Figure 4.1: The dynamical properties of the inside-outside algorithm. The x-axis is
qs and the y-axis is ¢g. The vectors represent the motion of the parameters from
one iteration to the next when o = 2 and ¢¢ = .5. Notice that the upper right cor-
ner (grammar K) and the lower left (grammar L) are stationary points (local max-
ima), and that the region of attraction for the global optimum (L) is bigger than for
(K), but that there is still a very substantial set of starting points from which the
algorithm will converge to the suboptimal grammar. o« = 2 is plotted instead of o =
% because this better depicts the asymmetry mutual information between words
introduces; with o = % the two regions of attraction would be of almost equal area.

I(A,B) = 1 bit. I(B,C)) = 0 bits.
I(A,C) =1 bit. I(B,D) = 0 bits.
I(A, D) = 1 bit. I(C, D)= 0 bits.

It might seem that the grammar (M) is a minimal-entropy grammar for

this corpus

S S
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since it makes the head A available to predict B, (', and D. Without mul-
tiple expansions rules for AP, it is impossible for A to enter into this many
head relationships. But the gain of one bit in word prediction is offset
by a loss of at least two bits from uncertainty in the expansion of AP.
Even if p(AP = A BP) = p(AP = AP CP) = 1/2, the probability of
the structure ABCD under the above grammar is one-quarter that as-
signed by a grammar with no expansion ambiguity. So, the grammar (N)
assigns higher probabilities to the corpus, even though it fails to model
the dependency between A and D. This is a general problem with SCFGs:
there is no way to optimally model multiple ordered adjunction without
increasing the number of nonterminals. Not surprisingly, the learning algo-
rithm never converges to the recursive grammar during test runs on this
corpus. Others have noted the inadequacy of modeling nonterminal expan-
sion as an independent process; history-based grammars (Black et al., 1992;
Magerman, 1995) are one response, but unfortunately one poorly suited to
unsupervised learning.

What broader implication does this deficiency of SCFGs have for context-
free grammar based language acquisition? It suggests if we were to estimate
a grammar from English text, that the sequence complex noun phrase sur-
face form D A N PP is far more likely to get the interpretation

DP NP
D/>P\ " 5w
an
A NP A NP

5 rr 5 e

and therefore that, for many subject and object noun phrases, the noun will
never enter into a bigram relationship with the verb. Obviously sufficient
mutual information between nouns and verbs, adjectives, and determiners
would force the global optimum to include multiple expansions of the NP
category, but it seems likely (given the characteristics of the inside-outside
algorithm) that before such mutual information could be inferred from text,
the search process would settle on a local optimum that does not pass the
noun feature out. This case is another illustration of how intimately tied the
form of stochastic grammars is to their ability to reproduce “linguistically
plausible” structure in an unsupervised framework.

5. Attacking the Problems

We have argued that the grammatical representations commonly used for
unsupervised learning will never converge on linguistically plausible struc-
tures, both because they fail to acknowledge the linguistic basis of phrase
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structure, and because the search procedures associated with them tend to
get stuck in local optima. Although they will not be fleshed out in great
detail here, we present sketches of “fixes” for some of the problems our anal-
ysis has touched on. These are essentially proposals for further research, and
are offered to show that there is still hope unsupervised techniques can be
made to work for grammar induction.

5.1. RULE INTERACTION AND LINK GRAMMARS

In the first experiment described above, the failure of the inside-outside
algorithm to converge to the optimal grammar is due to the discontinuous
nature of the search space, a consequence of rule interaction. Three different
parameters are tightly coupled, and none can be determined independently
of the rest. In this case, the space is more complicated than it need be,
because nonterminals are labeled.

Fortunately, the space can be flattened. In particular, grammars can
be represented in terms of head relations, in a manner very similar to
the link grammars of (Sleator and Temperley, 1991). Let us look again
the sequence V PN. There are only three words here, and therefore three
heads. Assuming a head-driven bigram model as before, there are only
three possible anlayses of this sequence, which we write by listing the pairs
of words that enter into predictive relationships:

Head Relations | Equivalent Parse Trees

V-PV-N E,G
V-PP-N ACFH
V-NP-N B,D

To map back into traditional phrase structure grammars, linking two heads
X — Y is the same as specifying that there is some phrase XP headed by
X which is a sibling to some phrase YP headed by Y. Of course, using
this representation all of the optimal phrase structure grammars (A,C,F
and H) are identical. Thus we have a representation which has factored out
many details of phrase structure that are unimportant as far as minimizing
entropy is concerned.

Simplifying the search space reaps additional benefits. A greedy ap-
proach to grammar acquisition that iteratively hypothesizes relations be-
tween the words with highest mutual information will first link V' to P,
then P to N, producing exactly the desired result for this example. And
the distance in parse or grammar space between competing proposals is at
most one relation (switching V — P to V — N, for instance), whereas three
different rule probabilities may need to be changed in the SCFG represen-
tation. This suggests that learning algorithms based on this representation
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are far less likely to encounter local optima. Finally, since what would have
been multiple parse hypotheses are now one, a Viterbi learning scheme is
more likely to estimate accurate counts. This is important, given the com-
putational complexity of estimating long-distance word-pair probabilities
from unbracketed corpora.

5.2. “FRINGE” RULES AND LEARNING

The naive assumption that nonterminal expansions are statistically in-
dependent causes many problems for statistical induction algorithms, as
we have seen. One obvious quick-fix is to permit non-binary production
rules. For instance, rather than associate a binary-branching structure with
a complex noun phrase, it could be modeled with a single rule NP =
D A N PP. These complex rules are a more natural representation for id-
iomatic sequences like for the last time, where it makes little sense to treat
the four words as a chain of pairwise relationships. But there are also many
good reasons not to use such rules:

1. There is a much greater risk of overtraining; the increased number of
parameters makes the estimation of all of them less reliable.

2. Since the number of possible rules is enormous, to be practical some
incremental means of hypothesizing rules must be incorporated into
the learning algorithm.

3. If lengthy rules are used, parses will contain very little internal struc-
ture, and fail to explain the grammatical regularities that occur even
within idiomatic passages.

The first and second point are partially addressed in the schemes of (Stol-
cke, 1994) and (Chen, 1995), who use a minimum description length (MDL)
criterion to reduce the risk of over-parameterization, and incorporate mech-
anisms for incrementally adding and deleting rules from the grammar. But
their schemes fare poorly on the last point, and (being incremental and
greedy) are subject to the search problems discussed in section 2.

But notice that complex rules may be decomposable into simple ones. In
particular, the right hand side of a rule looks very much like a sentence (one
that may contain nonterminals as well as terminals), and therefore it makes
sense to treat it as the fringe of a partial derivation tree. For instance, the
rule VP = give NP to NP is the fringe of the tree
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give to

and can be represented by the left derivation string

VP = VP PP|VP =V NP|V = give||o||PP = P NP||P = to|o

where the symbol ¢ indicates that a nonterminal is not expanded. Notice
several consequences of thinking about rules in this way:

— The probability of a rule can be computed in (almost) the same way
as the probability of a sentence, and therefore the cost of representing
the grammar is easily incorporated into a minimum description length
formulation.

— The optimal representation of a production rule can be computed using
standard parsing techniques.

— Because complex rules are represented in terms of simpler ones, they
have an implicit internal structure (each rule is a tree), which can be
reconstructed to give detailed structure even to sentences parsed with
long, flat rules.

— The notion of concatenating derivation strings leads naturally to a
scheme for hypothesizing new production rules.

Furthermore, because the useful information in a rule is contained on
its surface (rather than in its representation), the representation can be
continually recomputed during the search process. Therefore, even if a rule
VP = walk onis created during the learning process, as soon as some mech-
anism combines it with the word water to produce VP = walk on water,
the final sequence can be reanalyzed into a [yyp V [pp P N]] structure.
In fact, given competition from VP = walk on water, we would expect
the original rule to be only rarely applied, and it could be deleted. Thus,
many of the search problems associated with greedy strategies disappear,
because the history of the search process plays little role in the structure
assigned to a sentence. In a sense, the state of the search algorithm is no
longer a grammar, but a set of grammatical constructs (idioms, phrases,
etc). It is in finding a compact representation for these constructs that tra-
ditional phrase structure emerges. More details regarding this approach can
be found in (de Marcken, 1995).
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6. Conclusions

This paper has presented a detailed analysis of why naive unsupervised
grammar induction schemes do not reproduce linguistic structure when ap-
plied to raw text, and has suggested that new grammatical representations
and search algorithms may improve performance dramatically. We hope
that this study convinces others to look carefully at their representations
and search strategies before blindly applying them to language, and mo-
tivates researchers to study the relationship between linguistic theory and
their learning framework.
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A. Definitions

The entropy of a discrete random variable A with domain A, denoted H(A)
is defined by

H(A) =3, —pala)logpa(a).

Intuitively, the entropy of a random variable is a measure (in bits, if the
logarithm base is 2) of the uncertainty in the variable’s distribution. For a
Bernoulli event such as a coin toss (with probability of heads ¢), the entropy
is —qlogq — (1 — q)log(1l — ¢). This achieves a maximum of 1 bit at the
least predictable point ¢ = %, and a minimum of 0 bits at ¢ = 0 and ¢ = 1,
where the outcome is a certainty. Entropy is always bounded below by 0
and above by log|A|. The cross-entropy between two distributions p4(-)
and pg(-), defined by

Ha(B) =Y, —pala)logpp(a),

is a measure of how well the distribution pp(-) predicts A. For example,
if the distribution p(-) is over sentences in a corpus and B is a sentence
produced by a stochastic grammar, then ﬁA(B) is a measure of how well
the grammar models the corpus. The cross-entropy achieves a minimum of
H(A) when the distributions of A and B are identical. The joint entropy
and conditional entropy of two random variables A and B are defined by

H(Av B) = Za,b _pA,B(av b) logpA,B(av b)

H(A|B) = Z(Lb _pA,B(av b) 1ngA|B(a7 b)

Thus H(A, B) measures the uncertainty of the joint distribution of A and
B, and H(A|B) measures of the uncertainty of A given knowledge of B.
Conveniently, H(A, B) = H(A)+ H(B|A) = H(B)+ H(A|B). Finally, the

mutual information between A and B,

I(A,B) = Y.,,pan(a,b)log 2220

pa(@p5 ()
= H(A)- H(A|B)
= H(B)- H(B|A)

is a measure of the dependence between A and B. It is zero if and only if
A and B are independent, and is bounded above by min(H(A), H(B)). For
a deeper introduction to these terms from information theory, see (Cover
and Thomas, 1991).
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